22. The Frobenius Equation

After all the hype about relations in the last two episodes, it’s high time to use them to do something interesting. Let’s start by quickly reviewing the relational interpretation of our addition and zero generators. First, the addition:


Using our updated intuition, we are thinking of this as representing a relation of type Num × Num  ⇸  Num, defined as the set of all pairs


where x, y and z are any numbers that satisfy the condition x+y=z. So, for example, this relation contains the following three elements:


The zero generator


also has a relational interpretation. Its type is  {★} ⇸  Num. The reason for this is that Num0 is actually a singleton set—that is, a set containing precisely one element—and, since the name of this element does not matter, we may as well call it . The relational interpretation of the zero generator is the singleton relation

{(★, 0)}.        (‡)


The fact that Num0 is a singleton is related to a fact memorised by everyone in high school: we all know that k0 = 1 for any integer k. We will not spend a lot of time getting very deep into this now; let me just say that it’s one of the things that category theory can explain really well, maybe even better than people on Quora. I will just outline the basic idea—and if the following is too technical, don’t worry, it’s not important for our story.

The cartesian product of sets is an example of a general phenomenon called a limit. Binary, tertiary, and n-ary cartesian products (sets of pairs, triples, n-tuples, and so forth) are particularly simple instances: they are limits indexed by very simple categories.

For example, binary cartesian products are limits indexed by a category with two objects and only identity arrows. Such very simple categories, where there are no non-identity arrows, are sometimes called discrete.

Then, n-ary cartesian products are limits indexed by a discrete category with n objects. So what is a zero-ary cartesian product? A limit for the discrete category with no objects (i.e. the empty category) has its own name: it’s called a terminal object. And, in the category of sets, any singleton does the job of being terminal.


One of the things that you can do with relations that you can’t, in general, do with functions is turn them around. The result is sometimes called the opposite relation. We can use this idea to make sense of the following new generator, which looks like the mirror image of addition:


We will be thinking of this strange new beast as representing “addition backwards”. Although that does not make much sense as a function from left to right, it makes perfect sense as a relation; it is the one that consists of pairs


where x, y and z are any numbers that satisfy x+y = z. Of course, this is just (†), but backwards.

We can also reflect the zero generator to get a new generator that looks like this:zerorevThe relation this generator represents is, not surprisingly,

{(0, ★)}

which is just (‡) backwards.

As we do more graphical linear algebra, you will see that these mirror versions of addition and zero are extremely useful to have around!

Back when we were talking about ordinary addition, we identified some equations that concern the addition and zero generators. These were (Comm), (Unit) and (Assoc), and here they are again:


Since the backwards addition is still addition, it satisfies the same equations, but backwards.


It’s useful to notice that these end up looking a lot like the equations for copying; here they are again, as a reminder:


In fact, the equations for adding backwards and copying are exactly the same, apart from the colouring of the nodes. The colours make sure that we don’t confuse backwards addition and copying, since our intuition is that they stand for different relations. Also, again in order to avoid confusion, we tag all the new equation names for with op, for opposite. We will come back to copying, viewed relationally, in the next episode.

The equations for backward adding are not controversial. In fact, they are rather boring, and we have not really discovered anything new about addition so far. The interesting, new stuff comes when we think about what happens when addition sees itself in the mirror.

So what happens when we connect the adding generator to its mirror image? Let’s focus on the most interesting examples first, and concentrate on the relation represented by the following diagram:


We could translate everything back to first principles and compute the composition as in Rel, but just by looking at the diagram it’s clear that there are three variables involved; the numbers on the three wires that connect as arguments to the two additions. Let’s call these x, y and z and label the wires accordingly:


So, the relation consists of pairs


for all choices of x, y and z. For example, taking x=1, y=-1 and z=3, we see that


is in. Another example, taking x=3, y=2, z = -5 gives us


Looking at these examples, it seems that there may be another way of describing these pairs: those in which if we add the components, we get equal sums. Indeed, in the examples above we have 1+2 = 0 +3 = 3 and 3+-3 = 5 + -5 = 0.

So let’s see if is actually the same relation as ② below, which consists of all pairs


where p+q = r+s. Incidentally, ② is the relation represented by:


Just by looking at  and , clearly every  is an instance of , since summing up either of the two components of  gives x+y+z. Then to show that  and  are the same relation, it’s enough to to show that every instance of  is an instance of .

So lets take a closer look at . Since p+q = r+s, we can express each variable in terms of the other three, so in particular q=(r-p)+s and r=p+(q-s). This is almost in the form required by , we just need to show that r-p = q-s and indeed:

r-p = p+(q-s)-p = q-s.

That finishes the job:  and  denote the same relation. These arguments give us the justification for introducing the following intriguing equation.


In fact, the argument above can be recycled to show that also


since the calculations involved are clearly symmetric.

A nice way of memorising  is that it says “Z = X”: the diagram on the left looks a bit like the letter Z and the one on the right looks like an X. Then, the mnemonic for  says, for similar reasons, that X = S. Together, we have Z = X = S, and so in particular Z = S.


These three equations are quite famous; they are called the Frobenius equations. It’s a little bit redundant to keep all three, because it turns out that all three of (Frob),   and  are equally powerful: any one one of them lets you prove the other two, using diagrammatic reasoning. So, out of the three, we will just keep (Frob) because it is the most symmetrically pleasing.

For example, below there is the proof of , assuming that we have (Frob). I’ll leave the other five implications for you as nice exercises!


By the way, structures satisfying these equations, repeated below in an anonymous, gray mode, are often referred to as (commutative) Frobenius monoids.


Ferdinand Georg Frobenius was a German mathematician, active in the late 19th and early 20th century. He was very good, but he also happened to have an extremely cool last name. These two facts combined mean that a surprisingly large number of mathematical notions are called after him. He also had a pretty inspirational beard, as verified by the following photo.


The Frobenius equation (Frob) is probably most famous for the role it plays in the impressively named and difficult-sounding field of 2-dimensional topological quantum field theories (2D TQFT – even the acronym is scary!). There’s a very nice book on the subject by Joachim Kock called  Frobenius algebras and 2D topological quantum field theories. You can’t say that the title is misleading. And 2D TQFT, despite the name, is actually not that difficult to get your head around. A bit like the Sierpinski space.

Frobenius didn’t actually discover the Frobenius equation. As is often the case, there is a bit of controversy about who exactly thought of it first. Mathematicians can get quite uppity about this sort of thing. Some mathematics message boards descend into mini flame wars as people argue about what exactly was written in the corner of some blackboard at an obscure conference somewhere off the coast of Britain in the mid 1960s. I guess that professional mathematicians are amongst the very few people who actually remember any details of that particular decade.

My feeling is that—as is not uncommon with good maths—it’s likely that number of people thought of it at around the same time. The Frobenius equation was in the air. And it’s going to be a favourite of ours on this blog.

Having said all that, one of the earliest people to realise the importance of the Frobenius equation was Bob Walters, who I’ve talked about in Episode 12. If you’re interested in some of the history, you can take a look at a blog entry of his here where he wrote about some of its history. Note that Bob talks about the equation X=S, our equation . But as we’ve discussed before, it doesn’t matter which one of (Frob) or  you consider.

There are two more equations that show interesting ways in which addition interacts with itself in the mirror. We have already seen the first one in the last episode, where it featured as one of the equations of the special bimonoid, the structure isomorphic to the PROP of relations. It is none other than the “special” equation. Unfortunately the name “special”—terrible as it is—seems to have caught on, so we are stuck with it. Here it is:

specialLet’s convince ourselves why it makes sense in our context of addition interacting with its mirror image. Doing the simple calculation, the left diagram represents the relation

{ (x, y) | there exist numbers u, v such that u+v = x and u+v = y }.

Now, given any element (x, y) in this relation, it’s easy to see that x = y, since they are both equal to u+v for some u and v. Also, for any number z, (z, z) is in the relation because we can take, for example, u = z and v = 0. These two arguments combine to mean that the relation is actually the identity relation

{ (x, x) | x is a number }

which is, of course, the relational meaning of the identity wire. So, long story short, (Special) is compatible with our intuitions.

The second equation, (WBone), is pretty self evident: it’s the white version of the bone law from Episode 8. Both of the diagrams in (WBone) represent the relation that contains the single element (★,★).


The table below summarises the equations that we have discussed in this episode, which capture the various ways in which addition interacts with its backwards twin.


Unfortunately, the rate of articles has slowed down somewhat recently. This is mainly due to the time of the year: it’s the start of semester, so teaching, supervision and related activities are taking up a lot of my time.  Also, coincidently, this is the time of year when there are a few paper deadlines. And on top of all that I have a few pretty exciting research leads to chase. I’m sure that some of these will make it on the blog eventually.

I hope that the pace will pick up again in October. If you’ve stuck with the series so far, let me just say that we are getting very close to the really interesting stuff!

Continue reading with Episode 23 – Frobenius Snakes and Spiders.


12. Monoidal Categories and PROPs (Part 1)

So far we have not discussed categories in any depth. The reason for this is that I wanted to give you a feel for working with diagrams, for which we do not really need any deeper theory. I hope that I managed to convince you that diagrammatic reasoning is very intuitive: stretching, tightening and sliding along wires are all quite easy to visualise and think about. String diagrams are a user friendly notation, and the operations on them are also quite intuitive, at least if you ever played with Lego. These intuitive aspects are extremely important.

Similarly, it is perfectly usual to do sophisticated calculations using natural numbers without knowing the ins and outs of the Peano axioms, the definition of semirings, or the maths of  initial algebras. In fact, maybe thinking too hard about the set theoretical definition of the natural numbers or the Church encoding would actually make calculation more difficult!

My point is that the natural numbers are best understood, at least at first, as an intuitive concept: adding and multiplying are operations that have many applications in the world around us. Similarly it’s possible, or even preferable, to work with diagrams and use them to perform calculations without thinking too much about the underlying mathematical baggage.

I have also, however, promised not to handwave. So I feel that I owe it to you to present a proper mathematical argument that supports the claim that the diagrams built from the copy, discard, add and zero generators are really the same things as matrices of natural numbers. And I do not know how to do this rigorously without using category theory. We have already started the proof of this claim in the last episode, by showing how to translate diagrams to matrices, but we need to understand what this translation amounts to exactly and why it makes sense.

In any case, while it is possible to do graphical linear algebra without any category theory, doing so misses out on a lot of fun. For example, knowing about PROPs, we will eventually have a nice explanation about where the ten equations that we have so far come from. Some techniques of graphical linear algebra rely on understanding this provenance. We will also have a tighter grip on the finer points of diagrammatic reasoning, which is useful since we will be using it more and more as we get deeper into the story. Finally, having the category theory around also makes it easier to convince people who already know about linear algebra that diagrams are relevant to their interests. Indeed, category theory gives us the tools to relate the two worlds: the world of diagrams and the world of “traditional notation”.


A PROP is a special kind of monoidal category. I suspect that the definition was kicking around for a while, but the first reference that I know of is in a 1965 paper by Saunders Mac Lane, one of the two founders of category theory.

We need to get through a checklist all of the requirements of PROPs, so please bear with me while we work our way through this taxonomy. Thankfully, we already have two examples that we can refer to: diagrams and matrices.

Maybe you have heard that categories consist of objects and arrows. As their objects, PROPs have the natural numbers: what this really means is that the things that we care about, diagrams and matrices, are indexed by pairs of natural numbers. As we have seen:

  1. Any diagram has a number of dangling wires on the left and a number of dangling wires on the right.
  2. Any matrix has a number of columns and a number of rows.

We need a neutral word that can describe both diagrams and matrices, so that we don’t get confused. That generic word from category theory is arrow. And we will see that both diagrams and matrices are indeed the arrows of two different (albeit extremely closely related) PROPs.

The traditional notation for arrows unfortunately looks very much like function notation, but it is important to keep in mind that arrows do not need to be anything like functions.


So an arrow in a PROP has two associated natural numbers, the domain and the codomain. For a diagram, the domain is the number of dangling wires on the left and the codomain is the number of dangling wires on the right. In a matrix, the number of columns is the domain and the number of rows is the codomain.


Because PROPs are monoidal categories, there is an operation called the monoidal product. It takes two arrows as arguments and produces an arrow as a result. The rule is as follows:


As we have seen, direct sum of diagrams, and of matrices fits into this general form. So direct sum, in both cases, is an example of monoidal product. Monoidal product in PROPs is typically not commutative, but it is required to be associative:

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)    ①

This is one of the ways in which PROPs, which are strict monoidal categories, are simpler than ordinary monoidal categories, which come with much more bureaucracy: in vanilla monoidal categories, the monoidal product is only assumed to be associative “up-to isomorphism”, which means that the equals symbol in  is replaced with something weaker. This brings a whole load of extra baggage that we can simply ignore in PROPs. Maybe you heard about Homotopy Type Theory (HoTT), which has become quite fashionable in recent years: HoTT is all about getting to grips with the general idea of “replacing equality with something weaker”.

And so far so good for diagrams and matrices: direct sum passes the test for associativity in both of our worlds. Monoidal product also has an identity. It is a special arrow called id₀ : 0 → 0. It satisfies the property that, for any other arrow A, we have

id₀⊕ A = A ⊕ id₀ = A

In the world of diagrams, the identity for the monoidal product is the empty diagram, which we have already seen in the right hand side of the bone equation (B4). In the world of matrices, it is the matrix () : 0 → 0.


The second operation in PROPs is the basic operation in category theory called composition. It works as follows.


Composition is required to be associative:

(C ; D) ; E = C ; (D ; E)     ②

We have seen how to compose diagrams, and their composition is associative. In the world of matrices, we have seen that matrix multiplication plays the role of composition, and we have already seen that it is associative in the last episode.

In PROPs, for every natural number m, there is a special arrow idm: m → m. We have already seen id₀ which is the special arrow in the case m = 0. Identities serve a special role with regards to composition: composing any arrow with an identity at either end has no effect. So, for any arrow A: m → n, we have that

id; A = A = A ; idn     

Can you think of what serves as identities in the world of diagrams? We have met id1 which is the single wire diagram that we have already been referring to as identity.  What about idm for m>1? Well, we can construct this by stacking several identity wires on top of each other with the aid of direct sum. In fact, this follows from a requirement of PROPs that

idk+m = idk ⊕ idm     

Taking stacked wires as the identities means that equation is inherent in diagrams: just by drawing diagrams we are implicitly assuming that it holds. This is because we can use the Crema di Mascarpone procedure to cut up the same diagram in different ways. For example, taking just the copy generator, we can get three different expressions for it just by slicing in the right places:


So you see, one diagram, two equations. There is more of this kind of thing to come.

In the world of matrices, the identity on m is simply the m×m matrix that has 1s on the main diagonal and 0s everywhere else. Conveniently, this notion is commonly known as the identity matrix, and identity matrices satisfy .

Now for an interesting way in which composition and the monoidal product are related. Suppose that we have diagrams A, B, C and D that connect to each other as illustrated below.


There are two ways we could reasonably slice this diagram apart to get a formula. The first one is how we went about it for Crema di Mascarpone, make a vertical slice first


and read off the formula (A ⊕ C) ; (B ⊕ D).

The other way is to make a horizontal slice first


and read off the formula (A ; B) ⊕ (C ; D).  For simplicity I assumed that all four diagrams have a single dangling wire on each end, but the concept generalises for any numbers of dangling wires: the fact is that in any PROP, given A, B, C, D that can be composed in the way that I’ve illustrated, the following equation, sometimes called the middle four interchange, holds.

 (A ⊕ C) ; (B ⊕ D) = (A ; B) ⊕ (C ; D)    ⑤

Note that, again, just by drawing diagrams we are assuming that this property holds since the diagrams in each case are exactly the same, only the slicing technique changes. By the way, this is what I was alluding to last time when I mentioned that the same diagram can be cut up in different ways. In the world of matrices, showing that the middle four interchange holds is a matter of performing a simple calculation; we will skip the details.

Equations   and  illustrate the point I made all the way back in episode 2: a (large enough) diagram can tell a thousand formulas. The mere action of drawing a diagram sweeps away swathes of equational bureaucracy! This is one of the reasons why diagrams are such a great notation.


There is one final property of PROPs that I wanted to explain in this episode, and it concerns one instance of sliding along wires in diagrammatic reasoning. Let’s stay with diagrams A, B to illustrate it, but again the concept is more general since it generalises to any numbers of dangling wires in a straightforward way. Remember that since we can slide diagrams along wires, we consider the three diagrams below to be equal:


This yields the equations

(A ⊕ id ) ; (id ⊕ B) = A ⊕ B = (id ⊕ B); (A ⊕ id)

that are required to hold in any PROP and intuitively say that whenever A and B do not interconnect then they can be interleaved in arbitrary order. Actually, it turns out that the equations above are a consequence of the middle four interchange equation  and the way that identities work with composition . Can you see why? Think about what happens when we let some of the four diagrams in  equal the identity.

As we have seen back in Episode 6, the equality of the three diagrams illustrated above is part of what we have described as “sliding along wires”; one of the rules of diagrammatic reasoning. Next time we will complete our discussion of PROPs, explaining the mathematics behind the remainder of diagrammatic reasoning, and in the episode after that we will finish—for the time being— talking about the translation from diagrams to matrices. This detour is taking longer than I planned, and I’m itching to tell you about more graphical linear algebra.

An aside for people who already know the basic concepts of categories: properties and  that relate the monoidal product to composition amount to saying that  is not just any old way of taking two arrows and obtaining a new arrow: it is actually a functor, a mapping from the cartesian product of the category with itself back to itself. Equation  says that the mapping preserves identities and ⑤ that it preserves composition.

By the way, if you are interested in a good book for learning the basic concepts of category theory, I highly recommend Categories and Computer Science by Bob Walters. It is the book that first introduced me to categories. Bob was a professor at Sydney Uni when I was an undergraduate there and I did a vacation scholarship with him at the end of my second year of uni. I kept in touch with Bob over the years and—thinking about it now—he influenced my thought process more than any other person. Sadly, he died earlier this year and I will really miss our discussions.

Continue reading with Episode 13 – PROPs (Part 2) and Permutations